Telegram Group & Telegram Channel
Forwarded from Machinelearning
🚀Только что выпущено новое семейство моделей генерации кода Salesforce (SFR-Embedding-Code), занявшее 1-е место на бенчмарке CoIR!

Модель доступна в в 2-х размерах: 2B, 400M.

Основные характеристики:
1️⃣ Модель 2B: Занимает первое место в CoIR.
2️⃣ Модель 400M: демонстрирует лучшие показатели среди моделей на 0,5B параметров.
3️⃣ Поддерживает 12 языков программирования, Python, Java, C++, JavaScript, C# и другие!

Пример Запуска:

import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel

# Each query needs to be accompanied by an corresponding instruction describing the task.
query_instruction_example = "Given Code or Text, retrieval relevant content"
queries = [
"how to implement quick sort in Python?"
]

# No instruction needed for retrieval passages
passages = [
"def quick_sort(arr):\n if len(arr) <= 1:\n return arr\n pivot = arr[len(arr) // 2]\n left = [x for x in arr if x < pivot]\n middle = [x for x in arr if x == pivot]\n right = [x for x in arr if x > pivot]\n return quick_sort(left) + middle + quick_sort(right)",
"def bubble_sort(arr):\n n = len(arr)\n for i in range(n):\n for j in range(0, n-i-1):\n if arr[j] > arr[j+1]:\n arr[j], arr[j+1] = arr[j+1], arr[j]\n return arr"
]

# load model with tokenizer
model = AutoModel.from_pretrained('Salesforce/SFR-Embedding-Code-2B_R', trust_remote_code=True)

# get the embeddings
max_length = 32768
query_embeddings = model.encode_queries(queries, instruction=query_instruction_example, max_length=max_length)
passage_embeddings = model.encode_corpus(passages, max_length=max_length)

# normalize embeddings
query_embeddings = F.normalize(query_embeddings, p=2, dim=1)
passage_embeddings = F.normalize(passage_embeddings, p=2, dim=1)

scores = (query_embeddings @ passage_embeddings.T) * 100
print(scores.tolist())



Документация
Модель 400M
Модель 2B


📌Лицензирование моделей: CC-BY-NC-SA-4.0 License.


#CodeAI #MLResearch #SOTA #OpenScience #code #llm #ml



tg-me.com/pro_python_code/1686
Create:
Last Update:

🚀Только что выпущено новое семейство моделей генерации кода Salesforce (SFR-Embedding-Code), занявшее 1-е место на бенчмарке CoIR!

Модель доступна в в 2-х размерах: 2B, 400M.

Основные характеристики:
1️⃣ Модель 2B: Занимает первое место в CoIR.
2️⃣ Модель 400M: демонстрирует лучшие показатели среди моделей на 0,5B параметров.
3️⃣ Поддерживает 12 языков программирования, Python, Java, C++, JavaScript, C# и другие!

Пример Запуска:

import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel

# Each query needs to be accompanied by an corresponding instruction describing the task.
query_instruction_example = "Given Code or Text, retrieval relevant content"
queries = [
"how to implement quick sort in Python?"
]

# No instruction needed for retrieval passages
passages = [
"def quick_sort(arr):\n if len(arr) <= 1:\n return arr\n pivot = arr[len(arr) // 2]\n left = [x for x in arr if x < pivot]\n middle = [x for x in arr if x == pivot]\n right = [x for x in arr if x > pivot]\n return quick_sort(left) + middle + quick_sort(right)",
"def bubble_sort(arr):\n n = len(arr)\n for i in range(n):\n for j in range(0, n-i-1):\n if arr[j] > arr[j+1]:\n arr[j], arr[j+1] = arr[j+1], arr[j]\n return arr"
]

# load model with tokenizer
model = AutoModel.from_pretrained('Salesforce/SFR-Embedding-Code-2B_R', trust_remote_code=True)

# get the embeddings
max_length = 32768
query_embeddings = model.encode_queries(queries, instruction=query_instruction_example, max_length=max_length)
passage_embeddings = model.encode_corpus(passages, max_length=max_length)

# normalize embeddings
query_embeddings = F.normalize(query_embeddings, p=2, dim=1)
passage_embeddings = F.normalize(passage_embeddings, p=2, dim=1)

scores = (query_embeddings @ passage_embeddings.T) * 100
print(scores.tolist())



Документация
Модель 400M
Модель 2B


📌Лицензирование моделей: CC-BY-NC-SA-4.0 License.


#CodeAI #MLResearch #SOTA #OpenScience #code #llm #ml

BY Python RU











Share with your friend now:
tg-me.com/pro_python_code/1686

View MORE
Open in Telegram


Python RU Telegram | DID YOU KNOW?

Date: |

How Does Telegram Make Money?

Telegram is a free app and runs on donations. According to a blog on the telegram: We believe in fast and secure messaging that is also 100% free. Pavel Durov, who shares our vision, supplied Telegram with a generous donation, so we have quite enough money for the time being. If Telegram runs out, we will introduce non-essential paid options to support the infrastructure and finance developer salaries. But making profits will never be an end-goal for Telegram.

NEWS: Telegram supports Facetime video calls NOW!

Secure video calling is in high demand. As an alternative to Zoom, many people are using end-to-end encrypted apps such as WhatsApp, FaceTime or Signal to speak to friends and family face-to-face since coronavirus lockdowns started to take place across the world. There’s another option—secure communications app Telegram just added video calling to its feature set, available on both iOS and Android. The new feature is also super secure—like Signal and WhatsApp and unlike Zoom (yet), video calls will be end-to-end encrypted.

Python RU from br


Telegram Python RU
FROM USA